SPECO: Stochastic Perturbation based Clock tree Optimization considering temperature uncertainty
نویسندگان
چکیده
Modern computing system applications or workloads can bring significant non-uniform temperature gradient on-chip, and hence can cause significant temperature uncertainty during clock-tree synthesis. Existing designs of clock-trees have to assume a given time-invariant worst-case temperature map but cannot deal with a set of temperature maps under a set of workloads. For robust clock-tree synthesis considering temperature uncertainty, this paper presents a new problem formulation: Stochastic PErturbation based Clock Optimization (SPECO). In SPECO algorithm, one nominal clock-tree is presynthesized with determined merging points. The impact from the stochastic temperature variation is modeled by perturbation (or small physical displacement) of merging points to offset the induced skews. Because the implementation cost is reduced but the design complexity is increased, the determination of optimal positions of perturbed merging points requires a computationally efficient algorithm. In this paper, one Non-Monte-Carlo (NMC) method is deployed to generate skew and skew variance by one-time analysis when a set of stochastic temperature maps is already provided. Moreover, one principal temperature–map analysis is developed to reduce the design complexity by clustering correlated merging points based on the subspace of the correlation matrix. As a result, the new merging points can be efficiently determined level by level with both skew and its variance reduced. The experimental results show that our SPECO algorithm can effectively reduce the clock-skew and its variance under a number of workloads with minimized wire-length overhead and computational cost. & 2012 Elsevier B.V. All rights reserved.
منابع مشابه
Distributed Generation Expansion Planning Considering Load Growth Uncertainty: A Novel Multi-Period Stochastic Model
Abstract – Distributed generation (DG) technology is known as an efficient solution for applying in distribution system planning (DSP) problems. Load growth uncertainty associated with distribution network is a significant source of uncertainty which highly affects optimal management of DGs. In order to handle this problem, a novel model is proposed in this paper based on DG solution, consideri...
متن کاملOptimization of the Microgrid Scheduling with Considering Contingencies in an Uncertainty Environment
In this paper, a stochastic two-stage model is offered for optimization of the day-ahead scheduling of the microgrid. System uncertainties including dispatchable distributed generation and energy storage contingencies are considered in the stochastic model. For handling uncertainties, Monte Carlo simulation is employed for generation several scenarios and then a reduction method is used to decr...
متن کاملCoordination of green supply chain network, considering uncertain demand and stochastic CO2 emission level
Many supply chain problems involve optimization of various conflicting objectives. This paper formulates a green supply chain network throughout a two-stage mixed integer linear problem with uncertain demand and stochastic environmental respects level. The first objective function of the proposed model considers minimization of supply chain costs while the second objective function minimizes CO...
متن کاملMulti-Objective Stochastic Programming in Microgrids Considering Environmental Emissions
This paper deals with day-ahead programming under uncertainties in microgrids (MGs). A two-stage stochastic programming with the fixed recourse approach was adopted. The studied MG was considered in the grid-connected mode with the capability of power exchange with the upstream network. Uncertain electricity market prices, unpredictable load demand, and uncertain wind and solar power values, du...
متن کاملReliable 3-D Clock-Tree Synthesis Considering Nonlinear Capacitive TSV Model With Electrical-Thermal-Mechanical Coupling
A robust physical design of 3D-IC requires investigation on through-silicon-via (TSV). The large temperature and stress gradients can severely affect TSV delay with large variation. The traditional physical model treats TSV as resistor with linear electrical-thermal dependence, which ignores the fundamental device physics. In this paper, a physics-based electrical-thermal-mechanical delay model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integration
دوره 46 شماره
صفحات -
تاریخ انتشار 2013